File:  <House Mouse.htm >                                                       Pooled References                                GENERAL INDEX                                   [Navigate to   MAIN MENU ]

 

HOUSE MOUSE

 

Mus musculus L:  Mammalia, Rodentia:  Muridae

 

Contact

 

                CLICK on photo to enlarge.  To search for Subject Matter, Depress Ctrl/F

       The house mouse is a small rodent with a pointed snout, large rounded ears, and a long tail.  The mouse species Mus musculus has coexisted with human habitation for so long that wild populations are almost impossible to find.  This species   has been domesticated and frequently used as a laboratory mouse, for medical research. The complete mouse reference genome was sequenced in 2002 (Gregory et al. 2002).  House mice usually live in proximity to humans, in or around houses or fields.  They are native to India, and later they spread to the eastern Mediterranean about 13,000 BC, only spreading into the rest of Europe around 1000 BC. (Cucci 2005).  The time lag is related to the requirement for agrarian human settlements.  The house mouse first arrived in the Americas in the early sixteenth century.  It was carried aboard on the ships of Spanish explorers.  About one hundred years later, it arrived in North America with French fur traders and English colonists.  The house mouse has since been spread to all parts of the globe by humans.

       The adult main body length averages about 7.5–10 centimeters with a tail of 5–10 cm.  Wild individuals vary in color from grey and light brown to black but laboratory mice have been produced in a range of colors.   House mice are found in and around homes and commercial structures, as well as in open fields and agricultural lands.  They have been considered pests when occurring in houses due to some light damage they may cause and their association with certain pathogens that can infect humans.

       The social behavior of the house mouse adapts to environmental conditions, such as the availability of food and space. This adaptability allows house mice to inhabit diverse areas ranging from sandy dunes to apartment buildings.

       House mice have two forms of social behavior, the expression of which varies with the environment.  House mice in buildings and other urbanized areas with close proximity to humans are known as commensal.  Commensal mice populations often have an excessive food source resulting in high population densities and small home ranges.  This causes a switch from territorial behavior to a hierarchy of individuals (Frynta 2005).  Both commensal and noncommensal house mouse males aggressively defend their territory and act to exclude all intruders by scent marking with urine.

Genetics

 

       Many studies have been done on mouse phylogenies to reconstruct early human movements. For example, one study suggests the possibility of a previously unsuspected early link between Northern Europe and Madeira on the basis of the origin of Madeiran mice.  House mice may also be responsible for the domestication of cats.  The National Human Genome Research Institute has determined that on average, the protein-coding regions of the mouse and human genomes are 85 percent identical; some genes are 99 percent identical while others are only 60 percent identical. These regions are evolutionarily conserved because they are required for function. In contrast, the non-coding regions are much less similar (only 50 percent or less). Therefore, when one compares the same DNA region from human and mouse, the functional elements clearly stand out because of their greater similarity. Scientists have developed computer software that automatically aligns human and mouse sequences making the protein-coding and regulatory regions obvious.

       Human, mouse and other mammals shared a common ancestor approximately 80 million years ago. Therefore the genomes of all mammals are comparably similar. Comparisons of the DNA sequence of the dog or the cow with that of the human theoretically would be quite informative. However, the mouse has a major advantage in that it is a well-established experimental model. Not only can genes easily be found in mouse genome sequence, but it also is possible to test experimentally the function of those genes in the mouse. Thus, scientists can mimic in mice the effect of DNA alterations that occur in human diseases and carefully study the consequences of these DNA misspellings. Mouse models also afford the opportunity to test possible therapeutic agents and evaluate their precise effects.

 

     REFERENCES

 

 

Auclair Y, B. König & A. K. Lindholm.  2014.  Socially mediated polyandry: a new benefit of communal nesting in mammals. 

     Behavioral Ecology. 25 (6):  1467–1473.

 

Berry, R. J.  1970.  The natural history of the house mouse.  (PDF). Field Studies. 3:  219–62.

 

Bonthius, D. J.  2012.  Lymphocytic choriomeningitis virus: an underrecognized cause of neurologic disease in the fetus, child,

     and adult.  Seminars in Pediatric Neurology. 19 (3):  89–95.

 

Boursot, P., W. Din, R. Anand, D. Darviche, B. Dod, F. von Deimling, G. P. Talwar & F. Bonhomme.  1996.  Origin and radiation of

     the house mouse: Mitochondrial DNA phylogeny.  Journal of Evolutionary Biology. 9 (4):  391–415. 

 

Calderone, J. B. & G. H. Jacobs.  2009.  Regional variations in the relative sensitivity to UV light in the mouse retina.  Visual

     Neuroscience. 12 (3):  463–8. 

 

Centers for Disease Control Prevention.  2005.  Interim guidance for minimizing risk for human lymphocytic choriomeningitis virus

     infection associated with rodents.  Morbidity & Mortality Weekly Report. 54 (30):  747–9. 

 

Chamero P., T. F. Marton, D. W. Logan, K. Flanagan, J. R. Cruz, A. Saghatelian, B. B. Cravatt & L. Stowers.  2007.  Identification

     of protein pheromones that promote aggressive behaviour.  Nature. 450 (7171):  899–902. 

 

Courtney=Jones, Stephanie K. & Phillip G. Byrne.  2017.  What role does heritability play in transgenerational phenotypic

     responses to captivity? Implications for managing captive populations.  Zoo Biology. 36 (6):  397–406.

 

Cucchi, T., J. D. Vigne & J. C. Auffray.  2005.  Origin of house mouse.  Biological Journal of the Linnaean Society. 84 (3):  429–45.

 

Firman, R. C. & L. W.  Simmons.  2008.  Polyandry, sperm competition, and reproductive success in mice.  Behavioral Ecology. 

     19 (4):  695–702. 

 

Firman, R. C. & L. W. Simmons.  2008.  R. Snook (ed.).  Polyandry facilitates postcopulatory inbreeding avoidance in house mice. 

     Evolution; International Journal of Organic Evolution. 62 (3):  603–11. 

 

Firman, R. C. & L. W. Simmons.  2010.  Experimental evolution of sperm quality via postcopulatory sexual selection in house mice. 

     Evolution; International Journal of Organic Evolution. 64 (5):  1245–56. 

 

Firman, R. C. & L. W. Simmons LW.  2015.  Gametic interactions promote inbreeding avoidance in house mice.  Ecology

     Letters. 18 (9):  937–43.

 

Frynta, Daniel, Markéta Slábová,  Hana Váchová,  Radka Volfová & Munclinger Pavel.  2005.  Aggression and commensalism in

     house mouse: A comparative study across Europe and the near east.  Aggressive Behavior. 31 (3):  283–93.

 

Gregory, S. G., M. Sekhon, J. Schein, S. Zhao, K. Osoegawa, C. E. Scott et al.  2002.  A physical map of the mouse genome.

     Nature. 418 (6899): 743–50. 

 

Karpathy, S. E.  2008.  Rickettsia typhi and R. felis in rat fleas (Xenopsylla cheopis), Oahu, Hawaii.  Emerging Infectious Diseases.

     14 (10):  1613–5. 

 

Mayer, J. A., J. Foley, D. de La Cruz, C. M. Chuong & R. Widelitz.  2008.  Conversion of the nipple to hair-bearing epithelia by

     lowering bone morphogenetic protein pathway activity at the dermal-epidermal interface.  The American Journal of Pathology. 

     173 (5):  1339–48. 

 

Musser, G., R. Hutterer, R. B. Kryštufek, N. Yigit & G. Mitsainas.  2021.  [amended version of 2016 assessment].  Mus musculus

     IUCN Red List of Threatened Species. 2021:

 

Prager, E. M., C. Orrego & R. D. Sage.  1998.  Genetic variation and phylogeography of central Asian and other house mice,

     including a major new mitochondrial lineage in Yemen. Genetics. 150 (2):  835–61. 

 

Shrewsbury, J. F. D.  1970.  A History of Bubonic Plague in the British Isles.  Cambridge University Press. p. 15.

 

Sherborne, A. L., M. D. Thom, S. Paterson, F. Jury, W. E. Ollier, P. Stockley, R. J. Beynon & J. L. Hurst.  2007.  The genetic basis

     of inbreeding avoidance in house mice.  Current Biology. 17 (23):  2061–6.

 

Szenczi, P., O. Bánszegi, Z Groó & V. Altbäcker.  2012.  Development of the social behavior of two mice species with contrasting

     social systems.  Aggressive Behavior. 38 (4):  288–97.

 

Tattersall, Françoise H., R. H. Smith & F. Nowell.  1997.  Experimental colonisation of contrasting habitats by house mice.  Zeitschrift

     für Säugetierkunde. 62 (6):  350–8.

 

Thonhauser,  K. E.,  M. Thoß, K. Musolf, T. Klaus& D. J. Penn.  2014.  Multiple paternity in wild house mice (Mus musculus

     musculus):  effects on offspring genetic diversity and body mass.  Ecology & Evolution. 4 (2):  200–9.

 

Verhaegh, E. M., W. Moudrous, A. G. Buiting, A. A. van der Eijk & C. C. Tijssen.  2014).  Meningitis after a mouse bite (in Dutch).

     Nederlands Tijdschrift voor Geneeskunde 158:  A7033. 

 

Waterston, R.H., K. Lindblad-Toh, E. Birney, J. Rogers, J. F. Abril & P. Agarwal et al.  2002.  Initial sequencing and comparative

      analysis of the mouse genome. Nature. 420 (6915):  520–62. 

 

Wolff, Robert J.  1985.  Mating behaviour and female choice:  Their relation to social structure in wild caught House mice

     (Mus musculus) housed in a semi-natural environment.  Journal of Zoology. 207:  43–51.